BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 47(5), 1301—1302 (1974)

Effects of Substituents on p K_a and τ_{OH} Values of Hydroxyaryl-1,3,5-triazines; σ_p^- Values of 1,3,5-Triazinyl Groups.

Yukio Онто, Yōji Hashida, Shizen Sekiguchi, and Kohji Matsui Department of Chemistry, Faculty of Engineering, Gunma University, Tenjin-cho, Kiryu, Gunma 376 (Received January 25, 1974)

Synopsis. Regular relations were found between substituents in the s-triazine nucleus and pK_a values, τ_{OH} values of o- and p-hydroxyphenyl-s-triazines, and stabilities of chelation of the o-isomers. The substituent constants (σ_p^-) for some s-triazinyl groups were also found.

No detailed information has been given on the relation between chemical constitutions of 2-(o-hydroxyaryl)-nitrogen heteroaromatics and their stability of chelation because of the difficulty of obtaining a series of 2-(o-hydroxyaryl)-nitrogen heteroaromatics. However, a number of hydroxyaryl-s-triazines are readily available by the photolysis of aryloxy-chloro-s-triazines followed by treatment with nucleophiles.¹⁾ These s-triazine derivatives can provide an appropriate series of 2-(o-hydroxyaryl)-nitrogen heteroaromatic for studying the substituent effects on the strength of chelation. This paper deals with the effects of substituents in the s-triazine nucleus on pK_a value and ¹H chemical shift of phenolic proton of hydroxyaryl-s-triazine giving substituent constants for the s-triazine nucleus.

Experimental

The NMR spectra were recorded on a Varian A-60D spectrometer in DMSO- d_6 with tetramethylsilane as an internal standard, and the pK_a values were measured spectro-

photometrically in water at 25 °C.

Materials. Hydroxyaryl-s-triazines were synthesized by the method described previously.¹⁾

Results and Discussion

 pK_a Values of Hydroxyaryl-s-triazines. In the ordinary chelated phenols the stabilities of chelation are regularly correlated with their pK_a values. Thus, the stabilities of chelation of o-hydroxyaryl-s-triazines were discussed in connection with their pK_a values. The pK_a values of various hydroxyaryl-s-triazines are given in Table 1.

We see that the pK_a values of o-hydroxyphenyl-striazines are higher than those of the corresponding p-isomers, suggesting that chelate ring formation takes place in each o-hydroxyphenyl-s-triazine. The pK_a values of o- and p-hydroxyphenyl-s-triazines vary regularly with two substituents in the s-triazine nucleus $[pK_a(o) = -0.890 \ \Sigma \sigma_m + 11.37$, where $\Sigma \sigma_m$ denotes a summation of σ_m values of two substituents in the s-triazine nucleus]. However, the pK_a values of p-hydroxyphenyl-s-triazines were affected to a lesser extent than the o-isomers by the substituents in the s-triazine nucleus; the relatively large difference in pK_a value between the o-hydroxyaryl-s-triazines is considered

Table 1. pK_a values and 1H chemical shifts of phenolic protons of hydroxyaryl-s-triazines

$$X \xrightarrow{\text{HO}} X \xrightarrow{\text{N} = \begin{pmatrix} X \\ Y \\ N - \begin{pmatrix} X \\ Z \end{pmatrix} \end{pmatrix}} X$$

L							
No.	HO-	X	Y	Z	pK_a	$ au_{ m OH}$	
1	o-OH	H	$-OC_6H_5$	$-OC_6H_5$	10.92	-1.57	
2	o-OH	H	$-OC_6H_5$	-OCH ₃	11.06	-1.93	
3	o-OH	H	-OCH ₃	-OCH ₃	11.17 ^{a)}	-2.52^{a}	
4	o-OH	H	$-OC_6H_5$	$-N(CH_3)_2$	11.29	-2.57	
5	o-OH	H	$-N(CH_3)_2$	$-N(CH_3)_2$	11.76	-3.75	
6	2 - OH	5-CH_3	$-OC_6H_4-CH_3(p)$	$-OC_6H_4-CH_3(p)$	11.45	-1.37	
7	2-OH	5-CH_3	$-OC_6H_4-CH_3(p)$	-OCH ₃	11.61	-1.77	
8	2 - OH	5-CH_3	$-OCH_3$	-OCH ₃	11.71 ^{a)}	-2.31^{a}	
9	2-OH	$5\text{-}\mathrm{CH_3}$	$-OCH_3$	$-N(CH_3)_2$	11.94	-2.92	
10	2-OH	5-CH_3	$-N(CH_3)_2$	$-N(CH_3)_2$	12.23	-3.13	
11	<i>p</i> -OH	H	$-OC_6H_5$	$-OC_6H_5$	-	-0.35	
12	<i>p</i> -OH	H	$-\mathrm{OC_6H_5}$	-OCH ₃	8.37	-0.27	
13	<i>p</i> -OH	H	$-OCH_3$	-OCH ₃	8.46 ^{a)}	-0.18^{a}	
14	<i>p</i> -OH	H	$-OC_6H_5$	$-N(CH_3)_2$	8.55	-0.10	
15	<i>p</i> -OH	H	$-OCH_3$	$-N(CH_3)_2$	8.65	-0.07	
16	$p ext{-OH}$	H	$-\mathrm{N(CH_3)_2}$	$-N(CH_3)_2$	8.88	+0.12	
17	2 - OH	5-Cl	$-OCH_3$	-OCH ₃	10.39^{a}	-2.64^{a}	
18	2-OH	6-H	$-OCH_3$	-OCH ₃	11.17 ^{a)}	-2.52^{a}	
19	2 -OH	6-OCH_3	-OCH ₃	-OCH ₃	11.97 ^{a)}	-2.10^{a}	

a) reported in the previous paper.1)

to be due not only to the difference in the original acidity of s-triazinyl-phenol but also to the difference in stability of the chelation. If steric requirements in all the o-hydroxyaryl-s-triazines are similar in magnitude as might be anticipated in these cases, the relative strength of intramolecular hydrogen bond can be evaluated by means of the difference in pK_a value between o- and corresponding p-hydroxyaryl-s-triazines When ΔpK_a values are $[\Delta p K_a = p K_a(o) - p K_a(p)].$ plotted against the $\sum\!\sigma_m$ values, a straight line of negative slope ($\Delta p K_a = -0.248 \sum \sigma_m + 2.77$) was obtained, suggesting that the stability of chelation varies with the substituents in the s-triazine nucleus, although the substituent effect is small. Similar relations were also observed in the case of 5-methyl-2-hydroxyphenyl-striazines, showing that the greater the electron-donating tendency of the two substituents in the s-triazine nucleus, the higher the pK_a value owing to the formation of stronger chelated ring due to an increase in electron density at the ring nitrogen atom. Thus, among the o-hydroxyaryl-s-triazines of the same phenol moiety the relative stability of chelation can be represented by the summation of σ_m values of two substituents in the s-triazine ring.

Chemical Shifts of Hydroxyl Protons of Hydroxyaryl-s-Substituent effects on the chemical shifts of hydroxyl protons of hydroxyaryl-s-triazines were investigated. Effects of substituents on the NMR signals of phenolic protons have been studied with many substituted phenols;2) in each case a good correlation holds between the substituents in the meta and para positions and ¹H chemical shifts of phenolic protons. ¹H Chemical shifts (in τ) of phenolic protons of hydroxyaryl-s-triazines are given in Table 1. In this case also the difference in τ_{OH} value between p-s-triazinylphenols is relatively small $[\tau_{\rm OH}(p) = -0.487 \sum \sigma_{\rm m} -0.091]$; the large difference in τ_{OH} value between o-isomers $[\tau_{OH}(o) =$ $2.27 \sum \sigma_m -2.79$] being ascribed to the difference in the strength of chelation. A linear relation holds between the $\Delta \tau_{\text{OH}}[\Delta \tau_{\text{OH}} = \tau_{\text{OH}}(o) - \tau_{\text{OH}}(p)]$ and $\sum \sigma_{\text{m}}$ values ($\Delta \tau_{\text{OH}} = -2.77 \sum \sigma_{\text{m}} + 2.71$). Similar relations are also observed in the case of 5-methyl-2-hydroxyphenyl-s-triazines. Thus, among the o-hydroxyaryl-striazines of the same phenol and different s-triazine moieties, not only the $\varDelta pK_a$ and $\varDelta \tau_{OH}$ values but also the $\sum \sigma_{\rm m}$ values of two substituents in the s-triazine nucleus can be utilized as a measure for the relative stability of chelation.

Substituent Constants of s-Triazinyl Groups. The s-triazinyl group is known as an electron-attracting substituent. However, so far there has been no quantitative evaluation for the electron-withdrawing powers of common s-triazinyl groups. In the p-hydroxyphenyl-s-triazines, each pK_a value was smaller than that of phenol, indicating that the s-triazinyl group is electron-attracting regardless of two substituents in the s-triazine nucleus. However, the pK_a value of this series also varies regularly with the $\sum \sigma_m$ value $[pK_a(p) = -0.635 \sum \sigma_m + 8.60]$.

Since a good linear relation holds between the sub-

Table 2. σ_p^- values of s-triazinyl groups

$$- \langle N = \langle Y \\ - \langle N \\ N - \langle Z \rangle$$

Y	Z	$\sum \sigma_{ m m}$	$\sigma_{ m p}^{-}$		
1	L	$(\sigma_{\rm m}\overline{Y} + \overline{\sigma}_{\rm m})$	Z) (a)	(b)	(d)
-Cl	-Cl	0.747	(0.82)°)	(0.88)°)	0.85
$-\mathrm{OC_6H_5}$	$-OC_6H_5$	0.504		0.80	0.80
$-OC_6H_5$	$-OCH_3$	0.367	0.71	0.75	0.73
$-OCH_3$	$-OCH_3$	0.230	0.66	0.70	0.68
$-OC_6H_5$	$-N(CH_3)_2$	0.041	0.61	0.63	0.62
-H	-H	0	$(0.60)^{c}$	$(0.62)^{c}$	0.61
$-OCH_3$	$-N(CH_3)_2$	-0.096	0.57	9.59	0.59
$-N(CH_3)_2$	$-N(CH_3)_2$	-0.422	0.47	0.47	0.47

a) obtained from pKa values using the Hammett equation of Biggs and Robinson.³⁾ (pKa=9.92—2.23 σ_p^-). b) obtained from $\tau_{\rm OH}$ values using the Hammett equation of Quellette²) ($\tau_{\rm OH}=0.774-1.40\sigma_p^-$). This equation was obtained using the results of Quellette by the method of least squares. c) obtained using correlation equations between σ_p^- and $\sum \sigma_m$ values; in the case of (a) series, $\sigma_p^-=0.30\sum \sigma_m+0.60$; in the case of (b) series, $\sigma_p^-=0.35\sum \sigma_m+0.62$. d) mean value of σ_p^- .

stituent and dissociation constants of phenols $(pK_a = -2.23\sigma + 9.92)$,³⁾ substituent constants for the s-triazinyl groups of σ_p - character can be obtained from the pK_a values of p-s-triazinylphenols. The results are given in Table 2. When these σ_p - values are plotted against the $\Sigma \sigma_m$ values, a straight line with a positive slope of 0.30 is obtained, indicating that the substituents in the s-triazine nucleus affect the electron-attracting power of s-triazine nucleus only to a minor extent.

In the case of τ_{OH} value, a linear correlation is also observed between the $\sum \sigma_{\text{m}}$ and τ_{OH} values of *p*-hydroxyphenyl-s-triazines. Substituent constants attributable to s-triazinyl groups were also obtained from τ_{OH} values using an equation obtained by plotting τ_{OH} values of substituted phenols²⁾ against the substituent constants σ_{D}^{-} .

The σ_p^- values of the two series agree fairly well. $\Sigma \sigma_m$ was found to become zero at σ_p^- =0.61, indicating the s-triazinyl group itself to be a fairly electron-attracting substituent. The bis(dimethylamino)- and dichloro-s-triazinyl groups were found to have the smallest and greatest σ_p^- values of the common s-triazinyl groups, being 0.47 and 0.85, respectively. This shows that the electron-attracting powers of the common s-triazinyl groups are comparable to those of ordinary acyl and other related groups.

References

- 1) Y. Ohto, H. Shizuka, S. Sekiguchi, and K. Matsui, This Bulletin, in press.
- 2) R. J. Quellette, Can. J. Chem., 43, 707 (1965); L. A. Cohen and W. M. Jones, J. Amer. Chem. Soc., 85, 3402 (1963).
- 3) A. I. Biggs and R. A. Robinson, J. Chem. Soc., 1961, 388.